Le Pendu, J. et al. Proposal for a unified classification system and nomenclature of lagoviruses. J. Gen. Virol. 98, 1658–1666. https://doi.org/10.1099/jgv.0.000840 (2017).
Google Scholar
Capucci, L., Scicluna, M. T. & Lavazza, A. Diagnosis of viral haemorrhagic disease of rabbits and the European brown hare syndrome. Rev. Sci. Tech. Off. Int. Épizoot. 10, 347–370 (1991).
Google Scholar
Wirblich, C. et al. European brown hare syndrome virus: Relationship to rabbit hemorrhagic disease virus and other caliciviruses. J. Virol. 68, 5164–5173 (1994).
Google Scholar
Gavier-Widén, D. & Mörner, T. Epidemiology and diagnosis of the European brown hare syndrome in Scandinavian countries: A review. Rev. Sci. Tech.-Off. Int. Épizoot. 10, 453–458 (1991).
Google Scholar
Fitzner, A. et al. Phylogenetic analysis of European brown hare syndrome virus strains from Poland (1992–2004). Viruses https://doi.org/10.3390/v13101999 (2021).
Google Scholar
Kwit, E. et al. The genetic analysis of new Polish strains of European brown hare syndrome. Pol. J. Vet. Sci. 17, 353–355 (2014).
Google Scholar
Le Gall-Reculé, G., Zwingelstein, F., Laurent, S., Portejoie, Y. & Rasschaert, D. Molecular epidemiology of European brown hare syndrome virus in France between 1989 and 2003. Arch. Virol. 151, 1713–1721 (2006).
Google Scholar
Billinis, C. et al. European brown hare syndrome in wild European brown hares from Greece. J. Wildl. Dis. 41, 783–786 (2005).
Google Scholar
Frölich, K. et al. New variants of European brown hare syndrome virus strains in free-ranging European brown hares (Lepus europaeus) from Slovakia. J. Wildl. Dis. 43, 89–96 (2007).
Google Scholar
Frölich, K. et al. European brown hare syndrome in free-ranging European brown and mountain hares from Switzerland. J. Wildl. Dis. 37, 803–807 (2001).
Google Scholar
Frölich, K. et al. European brown hare syndrome in free-ranging hares in Poland. J. Wildl. Dis. 32, 280–285 (1996).
Google Scholar
Frölich, K. et al. Epizootiologic and ecologic investigations of European brown hares (Lepus europaeus) in selected populations from Schleswig-Holstein, Germany. J. Wildl. Dis. 39, 751–761. https://doi.org/10.7589/0090-3558-39.4.751 (2003).
Google Scholar
Duff, J. P., Chasey, D., Munro, R. & Wooldridge, M. European brown hare syndrome in England. Vet. Rec. 134, 669–673 (1994).
Google Scholar
Marques, J. P. et al. Mountain hare transcriptome and diagnostic markers as resources to monitor hybridization with European hares. Sci. Data 4, 170178. https://doi.org/10.1038/sdata.2017.178 (2017).
Google Scholar
Alves, P. C. & Hackländer, K. Lagomorph Biology: Evolution, Ecology and Conservation (eds. Alves, P. C., Ferrand, N. & Hackländer, K.). Vol. 395–405 (Springer, 2008).
Fernandez de Luco, D., Arnal, M. C., Gortazar, C. & Gavier-Widen, D. XV Reunion de la Sociedad Espanola de Anatomia Patologica Veterinaria. Vol. 33.
Estruch, J. et al. 69th WDA /14th EWDA 2021 Joint Conference. Vol. 372.
Velarde, R. et al. Spillover events of infection of brown hares (Lepus europaeus) with rabbit haemorrhagic disease type 2 virus (RHDV2) caused sporadic cases of an European brown hare syndrome-like disease in Italy and Spain. Transbound. Emerg. Dis. 64, 1750–1761. https://doi.org/10.1111/tbed.12562 (2017).
Google Scholar
Mahar, J. E. et al. The discovery of three new hare lagoviruses reveals unexplored viral diversity in this genus. Virus Evol. 5, 005. https://doi.org/10.1093/ve/vez005 (2019).
Google Scholar
Droillard, C. et al. First complete genome sequence of a hare calicivirus strain isolated from Lepus europaeus. Microbiol. Resour. Announc. 7, e01224-e11218. https://doi.org/10.1128/MRA.01224-18 (2018).
Google Scholar
Cavadini, P. et al. Widespread occurrence of the non-pathogenic hare calicivirus (HaCV Lagovirus GII.2) in captive-reared and free-living wild hares in Europe. Transbound. Emerg. Dis. 68, 509–518. https://doi.org/10.1111/tbed.13706 (2021).
Google Scholar
Droillard, C. et al. Genetic diversity and evolution of Hare Calicivirus (HaCV), a recently identified lagovirus from Lepus europaeus. Infect. Genet. Evol. 82, 104310. https://doi.org/10.1016/j.meegid.2020.104310 (2020).
Google Scholar
Forrester, N. L., Moss, S. R., Turner, S. L., Scirrmeier, H. & Gould, E. A. Recombination in rabbit haemorrhagic disease virus: possible impact on evolution and epidemiology. Virology 376, 390–396 (2008).
Google Scholar
Lopes, A. M. et al. Characterization of old RHDV strains by complete genome sequencing identifies a novel genetic group. Sci. Rep. 7, 13599. https://doi.org/10.1038/s41598-017-13902-2 (2017).
Google Scholar
Mahar, J. E. et al. Benign rabbit caliciviruses exhibit similar evolutionary dynamics to their virulent relatives. J. Virol. 90, 9317–9329. https://doi.org/10.1128/JVI.01212-16 (2016).
Google Scholar
Abrantes, J. et al. Recombination at the emergence of the pathogenic rabbit haemorrhagic disease virus Lagovirus europaeus/GI.2. Sci. Rep. 10, 14502. https://doi.org/10.1038/s41598-020-71303-4 (2020).
Google Scholar
Abrantes, J. et al. Retrospective analysis shows that most RHDV GI.1 strains circulating since the late 1990s in France and Sweden were recombinant GI.3P–GI.1d strains. Genes 11, 910. https://doi.org/10.3390/genes11080910 (2020).
Google Scholar
Mahar, J. E. et al. Detection and circulation of a novel rabbit hemorrhagic disease virus in Australia. Emerg. Infect. Dis. 24, 22–31. https://doi.org/10.3201/eid2401.170412 (2018).
Google Scholar
Silvério, D. et al. Insights into the evolution of the new variant rabbit hemorrhagic disease virus (GI.2) and the identification of novel recombinant strains. Transbound. Emerg. Dis. 65, 983–992. https://doi.org/10.1111/tbed.12830 (2017).
Google Scholar
Lopes, A. M. et al. Full genomic analysis of new variant rabbit hemorrhagic disease virus revealed multiple recombination events. J. Gen. Virol. 96, 1309–1319. https://doi.org/10.1099/vir.0.000070 (2015).
Google Scholar
Szillat, K. P., Höper, D., Beer, M. & König, P. Full-genome sequencing of German rabbit haemorrhagic disease virus uncovers recombination between RHDV (GI.2) and EBHSV (GII.1). Virus Evol. https://doi.org/10.1093/ve/veaa080 (2020).
Google Scholar
Mahar, J. et al. Frequent intergenotypic recombination between the non-structural and structural genes is a major driver of epidemiological fitness in caliciviruses. Virus Evol. 7, veab080. https://doi.org/10.1093/ve/veab080 (2021).
Google Scholar
Abrantes, J., Esteves, P. J. & van der Loo, W. Evidence for recombination in the major capsid gene VP60 of the rabbit haemorrhagic disease virus (RHDV). Arch. Virol. 153, 329–335 (2008).
Google Scholar
Hu, B. et al. Recombination between G2 and G6 strains of rabbit hemorrhagic disease virus (RHDV) in China. Arch. Virol. 162, 269–272. https://doi.org/10.1007/s00705-016-3082-6 (2017).
Google Scholar
Esteves, P. J. et al. Emergence of pathogenicity in lagoviruses: Evolution from pre-existing nonpathogenic strains or through a species jump?. PLoS Pathog. 11, e1005087. https://doi.org/10.1371/journal.ppat.1005087 (2015).
Google Scholar
Boniotti, B. et al. Identification and characterization of a 3C-like protease from rabbit hemorrhagic disease virus, a calicivirus. J. Virol. 68, 6487–6495 (1994).
Google Scholar
López Vázquez, A., Martin Alonso, J. M., Casais, R., Boga, J. A. & Parra, F. Expression of enzymatically active rabbit hemorrhagic disease virus RNA-dependent RNA polymerase in Escherichia coli. J. Virol. 72, 2999–3004 (1998).
Google Scholar
Machin, A., Martin Alonso, J. M., Dalton, K. P. & Parra, F. Functional differences between precursor and mature forms of the RNA-dependent RNA polymerase from rabbit hemorrhagic disease virus. J. Gen. Virol. 90, 2114–2118 (2009).
Google Scholar
Machin, A., MartinAlonso, J. M. & Parra, F. Identification of the amino acid residue involved in rabbit hemorrhagic disease virus VPg uridylylation. J. Biol. Chem. 276, 27787–27792 (2001).
Google Scholar
Marin, M. S., Casais, R., Alonso, J. M. & Parra, F. ATP binding and ATPase activities associated with recombinant rabbit hemorrhagic disease virus 2C-like polypeptide. J. Virol. 74, 10846–10851 (2000).
Google Scholar
Goodfellow, I. et al. Calicivirus translation initiation requires an interaction between VPg and eIF 4 E. EMBO Rep. 6, 968–972 (2005).
Google Scholar
Smertina, E., Hall, R. N., Urakova, N., Strive, T. & Frese, M. Calicivirus non-structural proteins: Potential functions in replication and host cell manipulation. Front. Microbiol. 12, 712710. https://doi.org/10.3389/fmicb.2021.712710 (2021).
Google Scholar
Urakova, N. et al. Expression and partial characterisation of rabbit haemorrhagic disease virus non-structural proteins. Virology 484, 69–79. https://doi.org/10.1016/j.virol.2015.05.004 (2015).
Google Scholar
Zhu, J. et al. Nucleolin interacts with the rabbit hemorrhagic disease virus replicase RdRp, nonstructural proteins p16 and p23, playing a role in virus replication. Virol. Sin. 37, 48–59. https://doi.org/10.1016/j.virs.2022.01.004 (2022).
Google Scholar
Smertina, E. et al. Lagovirus non-structural protein p23: A putative viroporin that interacts with heat shock proteins and uses a disulfide bond for dimerization. Front. Microbiol. 13, 923256. https://doi.org/10.3389/fmicb.2022.923256 (2022).
Google Scholar
Palacios, F. Biometric and morphologic features of the species of the genus Lepus in Spain. Mammalia 53, 227–264. https://doi.org/10.1515/mamm.1989.53.2.227 (1989).
Google Scholar
Broekhuizen, S. M. & Maaskamp, F. Age determination in the European hare (Lepus europaeus Pallas) in the Netherlands. Z. Säugetierkunde 44, 162–175 (1979).
Lopes, A. M., Gavier-Widen, D., Le Gall-Reculé, G., Esteves, P. J. & Abrantes, J. Complete coding sequences of European brown hare syndrome virus (EBHSV) strains isolated in 1982 in Sweden. Arch. Virol. 158, 2193–2196. https://doi.org/10.1007/s00705-013-1714-7 (2013).
Google Scholar
Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
Google Scholar
Martin, D. P. et al. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 7, veaa087. https://doi.org/10.1093/ve/veaa087 (2021).
Google Scholar
Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027. https://doi.org/10.1093/molbev/msab120 (2021).
Google Scholar
Melo-Ferreira, J. et al. The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: Expansion and retreat with hybridization in the Iberian Peninsula. Mol. Ecol. 16, 605–618. https://doi.org/10.1111/j.1365-294X.2006.03166.x (2007).
Google Scholar