Monday, November 18, 2024

Cost-efficient management of peatland to enhance biodiversity in Finland

Must read


  • Yu, Z. C. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 9, 4071–4085. https://doi.org/10.5194/bg-9-4071-2012 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zedler, J. B. & Kercher, S. Wetland resources: Status, trends, ecosystem services, and restorability. Ann. Rev. Environ. Resour. 30, 39–74. https://doi.org/10.1146/annurev.energy.30.050504.144248 (2005).

    Article 

    Google Scholar 

  • Nuutinen, S. et al. The role of peatlands in finnish wood production the role of peatlands in Finnish wood production-an analysis based on large-scale forest scenario modelling. Silva Fennica 34, 131–153 (2000).

    Article 

    Google Scholar 

  • Tanneberger, F. et al. The power of nature-based solutions: How peatlands can help us to achieve key EU sustainability objectives. Adv. Sustain. Syst. 5, 2000146 (2021).

    Article 
    CAS 

    Google Scholar 

  • Paavilainen, E. & Päivänen, J. Peatland Forestry Vol. 111 (Springer, 1995).

    Google Scholar 

  • Bhattacharjee, J. et al. Development of aerial photos and LIDAR data approaches to map spatial and temporal evolution of ditch networks in peat-dominated catchments. J. Irrig. Drain. Eng. 147, 04021006 (2021).

    Article 

    Google Scholar 

  • Chapman, S. et al. Exploitation of Northern peatlands and biodiversity maintenance: A conflict between economy and ecology. Front. Ecol. Environ. 1, 525 (2003).

    Article 

    Google Scholar 

  • Ramchunder, S. J., Brown, L. E. & Holden, J. Catchment-scale peatland restoration benefits stream ecosystem biodiversity. J. Appl. Ecol. 49, 182–191 (2012).

    Article 
    CAS 

    Google Scholar 

  • Nieminen, M. et al. Post-drainage stand growth and peat mineralization impair water quality from forested peatlands. J. Environ. Qual. 51, 1211–1221 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ilmonen, J., Mykrä, H., Virtanen, R., Paasivirta, L. & Muotka, T. Responses of spring macroinvertebrate and bryophyte communities to habitat modification: Community composition, species richness, and red-listed species. Freshw. Sci. 31, 657–667 (2012).

    Article 

    Google Scholar 

  • Elo, M., Penttinen, J. & Kotiaho, J. S. The effect of peatland drainage and restoration on Odonata species richness and abundance. BMC Ecol. 15, 11 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laine, A. M., Mehtätalo, L., Tolvanen, A., Frolking, S. & Tuittila, E.-S. Impacts of drainage, restoration and warming on boreal wetland greenhouse gas fluxes. Sci. Total Environ. 647, 169–181 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Laine, A. M. et al. Restoration of managed pine fens: Effect on hydrology and vegetation. Appl. Veg. Sci. 14, 340–349 (2011).

    Article 

    Google Scholar 

  • Menberu, M. W. et al. Water-table-dependent hydrological changes following peatland forestry drainage and restoration: Analysis of restoration success. Water Resour. Res. 52, 3742–3760 (2016).

    Article 
    ADS 

    Google Scholar 

  • Worrall, F. et al. The impact of peatland restoration on local climate: Restoration of a cool humid Island. J. Geophys. Res. Biogeosci. 124, 1696–1713 (2019).

    Article 

    Google Scholar 

  • Lehan, K., McCarter, C. P. R., Moore, P. A. & Waddington, J. M. Effect of stockpiling time on donor-peat hydrophysical properties: Implications for peatland restoration. Ecol. Eng. 182, 106701 (2022).

    Article 

    Google Scholar 

  • Haapalehto, T., Kotiaho, J. S., Matilainen, R. & Tahvanainen, T. The effects of long-term drainage and subsequent restoration on water table level and pore water chemistry in boreal peatlands. J. Hydrol. 519, 1493–1505 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Haapalehto, T. et al. Recovery of plant communities after ecological restoration of forestry-drained peatlands. Ecol. Evol. 7, 7848–7858 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hedberg, P. et al. Vegetation recovery after multiple-site experimental fen restorations. Biol. Conserv. 147, 60–67 (2012).

    Article 

    Google Scholar 

  • Kangas, L. et al. Photosynthetic traits of Sphagnum and feather moss species in undrained, drained and rewetted boreal spruce swamp forests. Ecol. Evol. 4, 381–396 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kareksela, S. et al. Fighting carbon loss of degraded peatlands by jump-starting ecosystem functioning with ecological restoration. Sci. Total Environ. 537, 268–276 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Maanavilja, L., Kangas, L., Mehtätalo, L. & Tuittila, E.-S. Rewetting of drained boreal spruce swamp forests results in rapid recovery of Sphagnum production. J. Appl. Ecol. 52, 1355–1363 (2015).

    Article 

    Google Scholar 

  • Maanavilja, L., Aapala, K., Haapalehto, T., Kotiaho, J. S. & Tuittila, E.-S. Impact of drainage and hydrological restoration on vegetation structure in boreal spruce swamp forests. For. Ecol. Manag. 330, 115–125 (2014).

    Article 

    Google Scholar 

  • Soini, P., Riutta, T., Yli-Petäys, M. & Vasander, H. Comparison of vegetation and CO2 dynamics between a restored cut-away peatland and a pristine fen: Evaluation of the restoration success. Restor. Ecol. 18, 894–903 (2010).

    Article 

    Google Scholar 

  • Tolvanen, A., Saarimaa, M., Tuominen, S. & Aapala, K. Is 15% restoration sufficient to safeguard the habitats of boreal red-listed mire plant species?. Glob. Ecol. Conserv. 23, e01160 (2020).

    Google Scholar 

  • Young, D. M., Baird, A. J., Morris, P. J. & Holden, J. Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resour. Res. 53, 6510–6522 (2017).

    Article 
    ADS 

    Google Scholar 

  • Artz, R. R. E. et al. The potential for modelling peatland habitat condition in Scotland using long-term MODIS data. Sci. Total Environ. 660, 429–442 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kreyling, J. et al. Rewetting does not return drained fen peatlands to their old selves. Nat. Commun. 12, 5693 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • CBD. Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets. https://www.cbd.int/sp/ (2010).

  • European Commission. The EU Biodiversity Strategy to 2020. https://ec.europa.eu/environment/nature/info/pubs/docs/brochures/2020%20Biod%20brochure%20final%20lowres.pdf (2011).

  • Cortina-Segarra, J., Decleer, K. & Kollmann, J. Speed restoration of EU ecosystems. Nature 535, 231–231 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • European Commission. Biodiversity strategy for 2030. https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en (2020).

  • European Commission. Proposal for a regulation of the European Parliament and of the Council on nature restoration. Preprint at https://environment.ec.europa.eu/system/files/2022-06/Proposal%20for%20a%20Regulation%20on%20nature%20restoration.pdf (2022).

  • Cortina-Segarra, J. et al. Barriers to ecological restoration in Europe: Expert perspectives. Restor. Ecol. 29, e13346 (2021).

    Article 

    Google Scholar 

  • Tanneberger, F. et al. The peatland map of Europe. Mires Peat 19, 1–17 (2017).

    Google Scholar 

  • Korhonen, K. T. et al. Suomen metsät 2009–2013 ja niiden kehitys 1921–2013. http://urn.fi/URN:ISBN:978-952-326-467-0 (2017).

  • Statistics Finland. Energian kokonaiskulutus energianlähteittäin (In Finnish). https://pxweb2.stat.fi/PxWeb/pxweb/fi/StatFin/StatFin__ehk/statfin_ehk_pxt_12st.px/ (2022).

  • National Forestry Accounting plan for Finland. Submission of National Forestry Accounting plan including forest reference level (2021–2025) for Finland. https://mmm.fi/documents/1410837/1504826/NFAP_Finland_draft+29.11.2018.pdf/df0a7982-030f-35a2-63a8-e003362aa022 (2018).

  • Laasasenaho, K., Lensu, A., Rintala, J. & Lauhanen, R. Landowners’ willingness to promote bioenergy production on wasteland−future impact on land use of cutaway peatlands. Land Use Policy 69, 167–175 (2017).

    Article 

    Google Scholar 

  • Buchholz, T. & Volk, T. Profitability of willow biomass crops affected by incentive programs. Bioenergy Res. 6, 53–64 (2013).

    Article 

    Google Scholar 

  • Juutinen, A. et al. Cost-effective land-use options of drained peatlands–integrated biophysical-economic modeling approach. Ecol. Econ. 175, 106704 (2020).

    Article 

    Google Scholar 

  • Tolvanen, A., Juutinen, A. & Svento, R. Preferences of local people for the use of peatlands: The case of the richest peatland region in Finland. Ecol. Soc. 18, art19 (2013).

    Article 

    Google Scholar 

  • Glenk, K., Faccioli, M., Martin-Ortega, J., Schulze, C. & Potts, J. The opportunity cost of delaying climate action: Peatland restoration and resilience to climate change. Glob. Environ. Chang. 70, 102323 (2021).

    Article 

    Google Scholar 

  • Martin-Ortega, J. et al. Linking ecosystem changes to their social outcomes: Lost in translation. Ecosyst. Serv. 50, 101327 (2021).

    Article 

    Google Scholar 

  • Moxey, A. & Moran, D. UK peatland restoration: Some economic arithmetic. Sci. Total Environ. 484, 114–120 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Glenk, K., Schaafsma, M., Moxey, A., Martin-Ortega, J. & Hanley, N. A framework for valuing spatially targeted peatland restoration. Ecosyst. Serv. 9, 20–33 (2014).

    Article 

    Google Scholar 

  • Bullock, C. H. & Collier, M. When the public good conflicts with an apparent preference for unsustainable behaviour. Ecol. Econ. 70, 971–977 (2011).

    Article 

    Google Scholar 

  • Liu, W., Fritz, C., van Belle, J. & Nonhebel, S. Production in peatlands: Comparing ecosystem services of different land use options following conventional farming. Sci. Total Environ. 875, 162534 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Glenk, K. & Martin-Ortega, J. The economics of peatland restoration. J. Environ. Econ. Policy 7, 345–362 (2018).

    Article 

    Google Scholar 

  • Grammatikopoulou, I. & Vačkářová, D. The value of forest ecosystem services: A meta-analysis at the European scale and application to national ecosystem accounting. Ecosyst. Serv. 48, 101262 (2021).

    Article 

    Google Scholar 

  • Juutinen, A. et al. Trade-offs between economic returns, biodiversity, and ecosystem services in the selection of energy peat production sites. Ecosyst. Serv. 40, 101027 (2019).

    Article 

    Google Scholar 

  • Kasimir, Å., He, H., Coria, J. & Nordén, A. Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics. Glob. Chang. Biol. 24, 3302–3316 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Tata, H. L. Paludiculture: Can it be a trade-off between ecology and economic benefit on peatland restoration?. IOP Conf. Ser. Earth Environ. Sci. 394, 012061 (2019).

    Article 

    Google Scholar 

  • Rana, P. & Tolvanen, A. Transferability of 34 red-listed peatland plant species models across boreal vegetation zone. Ecol. Indic. 129, 107950 (2021).

    Article 

    Google Scholar 

  • Nyborg, K. Project evaluation with democratic decision-making: What does cost-benefit analysis really measure?. Ecol. Econ. 106, 124–131 (2014).

    Article 

    Google Scholar 

  • Laiho, R. et al. Heikkotuottoiset ojitetut suometsät–missä ja paljonko niitä on?. Metsätieteen aikakauskirja https://doi.org/10.14214/ma.5957 (2016).

    Article 

    Google Scholar 

  • Tolvanen, A. et al. Quantification and valuation of ecosystem services to optimize sustainable re-use for low-productive drained peatlands. Luonnonvara- ja biotalouden tutkimus 48/2018 (2018).

  • Rantala, S., Pekkinen, E. & Tammiruusu, S. Finnish Forestry Practice and Management (Metsäkustannus, 2011).

    Google Scholar 

  • Hyvärinen, E., Juslen, A., Kemppainen, E. & Uddström, A. The 2019 Red List of Finnish Species (Ympäristöministeriö & Suomen ympäristökeskus, 2019).

    Google Scholar 

  • Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Article 
    ADS 

    Google Scholar 

  • Salminen, H., Lehtonen, M. & Hynynen, J. Reusing legacy FORTRAN in the MOTTI growth and yield simulator. Comput. Electron. Agric. 49, 103–113 (2005).

    Article 

    Google Scholar 

  • Salminen, H. & Hynynen, J. M. A growth and yield simulation system. in Forest modelling for ecosystem management, forest certification, and sustainable management. (eds. LeMay, V. & Marshall, P.) 488 (2001).

  • Hynynen, J. et al. Long-term impacts of forest management on biomass supply and forest resource development: A scenario analysis for Finland. Eur. J. For. Res. 134, 415–431 (2015).

    Article 

    Google Scholar 

  • Hynynen, J. et al. Scenario Analysis for the Biomass Supply Potential and the Future Development of Finnish Forest Resources. (2014).

  • Repola, J., Hökkä, H. & Salminen, H. Models for diameter and height growth of Scots pine, Norway spruce and pubescent birch in drained peatland sites in Finland. Silva Fennica https://doi.org/10.14214/sf.10055 (2018).

    Article 

    Google Scholar 

  • Laurén, A. et al. Drainage and stand growth response in peatland forests—description, testing, and application of mechanistic peatland simulator susi. Forests 12, 1–23 (2021).

    Article 

    Google Scholar 

  • Hökkä, H. et al. Defining guidelines for ditch depth in drained scots pine dominated peatland forests. Silva Fennica https://doi.org/10.14214/sf.10494 (2021).

    Article 

    Google Scholar 

  • Sikström, U. & Hökkä, H. Interactions between soil water conditions and forest stands in boreal forests with implications for ditch network maintenance. Silva Fennica 50, 1416 (2016).

    Article 

    Google Scholar 

  • Hökkä, H., Stenberg, L. & Laurén, A. Modelling depth of drainage ditches in forested peatlands of Finland. Balt For. 26, 1–9 (2020).

    Article 

    Google Scholar 

  • Venäläinen, A., Tuomenvirta, H., Pirinen, P. & Drebs, A. A basic Finnish climate data set 1961–2000–description and illustrations. Reports no 2005:5. https://www.oulu.fi/oulugis/doc/data_description.pdf (2005).

  • Hökkä, H. et al. Long-term impact of ditch network maintenance on timber production, profitability and environmental loads at regional level in Finland: A simulation study. Forestry 90, 234–246 (2017).

    Google Scholar 

  • Chang, S. J. & Gadow, K. V. Application of the generalized Faustmann model to uneven-aged forest management. J. For. Econ. 16, 313–325 (2010).

    Google Scholar 

  • Official Statistics of Finland 2020. Cost-of-living Index 1951:10=100. Consumer Price Index [e-Publication] https://www.stat.fi/til/khi/2020/11/khi_2020_11_2020-12-14_tau_003_fi.html (2020).

  • Makrickas, E., Manton, M., Angelstam, P. & Grygoruk, M. Trading wood for water and carbon in peatland forests? Rewetting is worth more than wood production. J. Environ. Manag. 341, 117952 (2023).

    Article 

    Google Scholar 

  • Saarimaa, M. et al. Predicting hotspots for threatened plant species in boreal peatlands. Biodivers. Conserv. 28, 1173–1204 (2019).

    Article 

    Google Scholar 

  • Haapalehto, T. O., Vasander, H., Jauhiainen, S., Tahvanainen, T. & Kotiaho, J. S. The effects of peatland restoration on water-table depth, elemental concentrations, and vegetation: 10 years of changes. Restor. Ecol. 19, 587–598 (2011).

    Article 

    Google Scholar 

  • Keleher, M. J. & Rader, R. B. Bioassessment of artesian springs in the Bonneville Basin, Utah, USA. Wetlands 28, 1048–1059 (2008).

    Article 

    Google Scholar 

  • Koivusalo, H. et al. Impacts of ditch cleaning on hydrological processes in a drained peatland forest. Hydrol. Earth Syst. Sci. 12, 1211–1227 (2008).

    Article 
    ADS 

    Google Scholar 

  • Sarkkola, S. et al. Role of tree stand evapotranspiration in maintaining satisfactory drainage conditions in drained peatlands. Can. J. For. Res. 40, 1485–1496 (2010).

    Article 

    Google Scholar 

  • Brounen, D., de Jong, A. & Koedijk, K. Corporate finance in Europe: confronting theory with practice. Financ. Manag. 4, 71–101 (2004).

    Google Scholar 

  • Knoke, T., Paul, C. & Härtl, F. A critical view on benefit-cost analyses of silvicultural management options with declining discount rates. For. Policy Econ. 83, 58–69 (2017).

    Article 

    Google Scholar 

  • Price, C. Declining discount rate and the social cost of carbon: Forestry consequences. J. For. Econ. 31, 39–45 (2018).

    Google Scholar 

  • Hepburn, C. J. & Koundouri, P. Recent advances in discounting: Implications for forest economics. J. For. Econ. 13, 169–189 (2007).

    Google Scholar 

  • Pasqual, J., Padilla, E. & Jadotte, E. Technical note: Equivalence of different profitability criteria with the net present value. Int. J. Prod. Econ. 142, 205–210 (2013).

    Article 

    Google Scholar 

  • Horsburgh, N., Tyler, A., Mathieson, S., Wackernagel, M. & Lin, D. Biocapacity and cost-effectiveness benefits of increased peatland restoration in Scotland. J. Environ. Manag. 306, 114486 (2022).

    Article 

    Google Scholar 

  • Kurttila, M. et al. Applying a multi-criteria project portfolio tool in selecting energy peat production areas. Sustainability 12, 1705 (2020).

    Article 
    CAS 

    Google Scholar 



  • Source link

    More articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest article